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Twentieth-century sea-level rise reconstructions
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• Trends and multidecadal variability differ between reconstructions

• Uncertainty partially caused by sparse tide-gauge availability
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Twentieth-century sea-level rise and tide-gauge deserts
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• Large parts of the ocean go unobserved

• Can we better constrain 20th-century sea-level rise in the South Atlantic?
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Two approaches to better constrain sea level

Can we find extra observations?
• We use a new sea-level proxy from
a Falklands salt marsh.

• Due to data rescue we have a new
long tide-gauge record from Dakar,
Senegal

Do we expect sea-level changes in
the South Atlantic that differ from the
global mean?
• Could glacial isostatic adjustment,
ice mass loss or ocean dynamics
cause large differences between the
South Atlantic and the global mean?

• What do CMIP5 models tell us?
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A new salt-marsh record from the Falklands
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Data rescue from Dakar
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Data rescue efforts have led to a
long record that essentially
covers the whole century

Benchmark information has
been found as well
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From individual records to basin estimates

With these new estimates, can we compute an updated estimate of sea-level
change in the South Atlantic?

Yes! But we should keep in mind that:

• Tide gauges and salt marshes are affected by glacial isostatic adjustment
• Sea-level fingerprints from melting ice and land hydrology cause local
deviations

• Local vertical land motion

We can estimate and correct for these effects using GPS, GIA models and mass
redistribution estimates
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From individual records to basin estimates
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From individual records to basin estimates
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• Sea-level rise in South Atlantic likely larger than
global mean

• Still substantial uncertainties, mainly due to vertical
land motion

Can we find a physical explanation for this difference?
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Could it be ongoing mass redistribution?

Glaciers

1.14

West Antarctic Ice Sheet

1.05

Greenland Ice Sheet

1.17

East Antarctic Ice Sheet
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−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
mm yr­1

Number shows sea level rise (m)
in South Atlantic when
global-mean sea level would
rise by 1 m.

Ice mass loss results in
above-average sea-level rise in
the South Atlantic, except for
East Antarctica
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Could it be ongoing mass redistribution? Yes!

Mean

0.90
1.05

−1.2 −0.8 −0.4 0.0 0.4 0.8 1.2
mm yr­1

Standard error

0.0 0.2 0.4 0.6 0.8 1.0
mm yr­1

Estimates of 20th-century mass
redistribution from Adhikari et al (2019)

• Difference of 0.15 mm/yr between
South Atlantic Ocean and global
mean
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Could it be ocean dynamics?

EN4
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• All estimates show
above-average steric trends
(1955-2010)

• Representative for the 20th
century?
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What do CMIP5 models estimate?
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al. 2018)

• Both dynamic and total sea
level show above-average
South Atlantic MSL rise

• Difference on the order of
0.2 mm/yr
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Summary

• We have estimated 20th-century sea-level rise in the South Atlantic ’tide
gauge desert’

• Old and new sea-level records point at a larger sea-level trend than the
global mean

• Ocean dynamics and mass redistribution allow for such a difference

Paleo proxies and data rescue efforts are valuable to improve our understanding
of 20th-century sea-level changes, which are still not fully constrained!
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